If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=726
We move all terms to the left:
x^2-(726)=0
a = 1; b = 0; c = -726;
Δ = b2-4ac
Δ = 02-4·1·(-726)
Δ = 2904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2904}=\sqrt{484*6}=\sqrt{484}*\sqrt{6}=22\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{6}}{2*1}=\frac{0-22\sqrt{6}}{2} =-\frac{22\sqrt{6}}{2} =-11\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{6}}{2*1}=\frac{0+22\sqrt{6}}{2} =\frac{22\sqrt{6}}{2} =11\sqrt{6} $
| 1/3x+-5=-3+1/6x | | 70-x+x=580 | | 8p-7(p-3)=16 | | 7x+42=20+9x | | x^2-25/x^2+x-30=5 | | 6-(4-3x)-8=x | | (1/4x-3)=10 | | x/23=-45+11 | | 8(2f-2)=3(3f+2) | | |x+1|+|3x|=3 | | 1/2x+2/3=1/4(x+3) | | 4(x+5)-3x=-7x | | (x+2)^2=32 | | 2/5x+21=–1/5(8x–25)–2x | | 7/2=t+5/10 | | 5(z+9)=9+2z | | -20+7=y | | 1/2y=2(y-3) | | 25x+21=–15(8x–25)–2x | | 5y2=26y+5 | | -3-2x=10x+1 | | 5x+1=8x-2/ | | 2(x+3)^2-5=12 | | -2z+4=-4z | | 5x-3=27×+1 | | -48+x=-38 | | -2z+4=4z | | −7x=25−2x | | 35x=39 | | 15w-17w=14 | | 3/12=x | | -7x^2+21x+126=0 |